Megaflo Eco SystemFit
Unvented Indirect
Hot Water Cylinders

Important
Please read & understand all these instructions before commencing installation.
Please leave this manual with the customer for future reference.
Contents

1. Introduction .. 3
 1.1 General .. 3
 1.2 Symbols used ... 3
 1.3 Abbreviations ... 3
 1.4 Liabilities ... 3

2. Safety ... 4
 2.1 General safety warnings ... 4
 2.2 Recommendations ... 4
 2.3 Specific safety instructions ... 4

3. Technical specifications .. 5
 3.1 Technical data .. 5
 3.2 Dimensions .. 6
 3.3 Circulating pump set-up ... 7
 3.4 Electrical diagram(s) ... 9

4. Description of the product .. 11
 4.1 General description ... 11
 4.2 Operation principle .. 11
 4.3 Main components ... 11
 4.4 Standard delivery ... 11

5. Before installation ... 11
 5.1 Installation regulations ... 11
 5.2 Installation requirements ... 11
 5.3 Choice of location .. 12

6. Installation ... 13
 6.1 General .. 13
 6.2 Water connections ... 14
 6.3 Electrical connections ... 22
 6.4 Filling the installation ... 22

7. Commissioning ... 23
 7.1 General .. 23
 7.2 Checklist before commissioning .. 23
 7.3 Commissioning procedure ... 23

8. Operation .. 24
 8.1 General .. 24

9. Maintenance .. 25
 9.1 General .. 25
 9.2 Standard inspection & maintenance operations .. 25

10. Troubleshooting .. 26
 10.1 Fault finding ... 26

11. Decommissioning .. 27
 11.1 Decommissioning procedure ... 27

12.1 Spare parts list ... 27

Benchmark checklist ... 32
Commissioning & service records .. 33

Warranty ... 35

THE BENCHMARK SCHEME

Benchmark places responsibilities on both manufacturers and Installers. The purpose is to ensure that Customers are provided with the correct equipment for their needs, that it is installed, commissioned and serviced in accordance with the manufacturer's instructions by competent persons and that it meets the requirements of the appropriate Building Regulations and relevant electrical qualifications. The Benchmark Checklist can be used to demonstrate compliance with Building Regulations and should be provided to the Customer for future reference. Installers are required to carry out installation, commissioning and servicing work in accordance with the Benchmark Code of Practice which is available from the Heating and Hotwater Industry Council who manage and promote the Scheme. Visit www.centralheating.co.uk for more information.
1. Introduction

1.1 General

The following instructions are offered as a guide to the user and Installer.

The installation must be carried out by a competent plumbing and electrical Installer in accordance with Building Regulation G3 (England and Wales), Technical Standard P3 (Scotland) or Building Regulation P5 (Northern Ireland) and the Water Fitting Regulations (England and Wales) or Water Byelaws (Scotland).

1.2 Symbols used

In these instructions, various risk levels are employed to draw the user’s attention to particular information. In doing so we wish to safeguard the user, avoid hazards and guarantee the correct operation of the appliance.

DANGER
Risk of a dangerous situation causing serious physical injury.

WARNING
Risk of dangerous situation causing slight physical injury.

CAUTION
Risk of material damage.

1.3 Abbreviations

- T&P - Temperature & Pressure relief valve
- PRV - Pressure Reducing Valve
- Prv - Pressure relief valve

1.4 Liabilities

Manufacturers liability

Our products are manufactured in compliance with the requirements of the various applicable European Directives.

This appliance complies with the requirements of the CE marking directive.

In the interest of UK Customers, we are continuously endeavouring to make improvements in product quality. All the specifications stated in this document are therefore subject to change without notice.

Our liability as the manufacturer may not be invoked in the following cases:

- Failure to abide by the instructions on using the appliance.
- Faulty or insufficient maintenance of the appliance.
- Failure to abide by the instructions on installing the product.

Installer’s liability

The Installer is responsible for the installation and the commissioning of the appliance. The Installer must respect the following instructions:

- Read and follow the instructions given in the manuals provided with the appliance.
- Carry out installation in compliance with the prevailing legislation and standards.
- Perform the initial start up and carry out any checks necessary.
- Complete the commissioning checklist.
- Explain the installation to the user.
- If maintenance is necessary, warn the user of the obligation to check the appliance and maintain it in good working order.
- Give all the instruction manuals to the user.

Users liability

To guarantee optimum operation of the appliance, the user must respect the following instructions:

- Read and follow the instructions given in the manuals provided with the appliance.
- Call on qualified professionals to carry out installation and initial start up.
- Get your fitter to explain your installation to you.
- Have your required checks and services done.
- Keep the instruction manuals in good condition and close to the appliance.

This appliance can be used by children aged from 8 years and above and persons with reduced physical sensory or mental capabilities or lack of experience and knowledge if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved. Children shall not play with the appliance. Cleaning and user maintenance shall not be made by children without supervision.

Children must be supervised to ensure they do not play with the appliance.
2. Safety

2.1 General safety warnings

DANGER
This cylinder is unvented and as such becomes pressurised when in operation. The combination of pressurisation and hot water could lead to serious physical injury if the safety instructions in this manual are not adhered to.

WARNING
- Only competent persons having received adequate training are permitted to work on the appliance and the installation.
- Do not tamper with any of the safety valves or controls supplied with the cylinder.
- Before any work, switch off the mains supply to the appliance and the water mains.
- Do not switch on if there is a possibility that the water in the cylinder is frozen.

CAUTION
Do not operate immersion heaters until the cylinder has been filled with water.

2.2 Recommendations

WARNING
When handling the unit, take appropriate precautions for the weight of the unit. Weights can be found in section 3, table 1 & 2, page 5 & 6.

CAUTION
Annual maintenance is recommended by a competent person.

2.3 Specific safety instructions

WARNINGS
- If water discharges from the temperature/pressure relief valve on the cylinder shut down the boiler/immersion heaters. Do not turn off any water supply. Contact a competent Installer for unvented water heaters to check the system.
- Do not tamper with any of the safety valves fitted to the system. If a fault is suspected contact a competent Installer.
- DO NOT bypass the thermal cut-out(s) in any circumstances.
- Where the inlet supply to the Pressure Reducing Valve is routed through a heated space and is fitted with a check valve or other fitting that would prevent backflow, high pressures can be experienced in the inlet pipe due to warming that can cause damage to the PRV or other fittings on the inlet supply. In these circumstances, the installation of a means to accommodate expansion and thus limit the pressure rise in the inlet pipe is recommended.

- Water may drip from the discharge pipe of the pressure-relief device and this pipe must be left open to the atmosphere; (see page 21 for more details)
- The pressure-relief device is to be operated regularly to remove lime deposits and to verify that it is not blocked; (see page 21 for more details)
- How hot water can be drained. (see page 25 for more details)
- The type or characteristics of the pressure-relief device and how to connect it; (see Figure 6, page 13 for details and Figure 10, page 16)
- A discharge pipe connected to the pressure-relief device is to be installed in a continuously downward direction and in frost free environment; (see Figure 16, page 13 for details)

Details on how to set the temperature controls for both immersion heaters and boiler controls can be found in section “Installation Instructions Figure 14, page 23.

The HWA Charter Statement requires that all members adhere to the following:
- To supply fit for purpose products clearly and honestly described.
- To supply products that meet, or exceed appropriate standards and building and water regulations.
- To provide pre and post sales technical support.
- To provide clear and concise warranty details to Customers.
3. Technical specifications

3.1 Technical data:

<table>
<thead>
<tr>
<th>Model(s)</th>
<th>125i</th>
<th>145i</th>
<th>170i</th>
<th>210i</th>
<th>250i</th>
<th>300i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency class</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Storage volumes V in Litres</td>
<td>137.0</td>
<td>155.0</td>
<td>178.0</td>
<td>195.0</td>
<td>233.0</td>
<td>283.0</td>
</tr>
<tr>
<td>Standing loss in W</td>
<td>44.0</td>
<td>49.0</td>
<td>50.0</td>
<td>59.0</td>
<td>67.0</td>
<td>70.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Indirect cylinders tested in accordance with BS EN 12897:2006.</td>
</tr>
<tr>
<td>2. Heat up time from cold through 45°C, based on a flow temperature of 80°C +/- 2°C & normal volume.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1: Technical data - Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max direct kW rating</td>
</tr>
<tr>
<td>Immersion heat up times (Btm immersion, 3kW)</td>
</tr>
<tr>
<td>Coil surface area (m²)</td>
</tr>
<tr>
<td>Primary Coil heat up times</td>
</tr>
<tr>
<td>15l/min</td>
</tr>
<tr>
<td>30l/min</td>
</tr>
<tr>
<td>45l/min</td>
</tr>
<tr>
<td>Coil rating (kW)²</td>
</tr>
<tr>
<td>15l/min</td>
</tr>
<tr>
<td>30l/min</td>
</tr>
<tr>
<td>45l/min</td>
</tr>
<tr>
<td>Pressure drop through coil</td>
</tr>
<tr>
<td>15l/min</td>
</tr>
<tr>
<td>30l/min</td>
</tr>
<tr>
<td>45l/min</td>
</tr>
<tr>
<td>Heat loss (kWh/24hrs)</td>
</tr>
<tr>
<td>Hot water capacity (volume to >40°C)</td>
</tr>
<tr>
<td>Weight empty (kg)</td>
</tr>
<tr>
<td>Weight full (kg)¹</td>
</tr>
<tr>
<td>Volume (Litres)¹</td>
</tr>
<tr>
<td>Max supply pressure</td>
</tr>
<tr>
<td>Max design pressure</td>
</tr>
<tr>
<td>Max operating pressure</td>
</tr>
<tr>
<td>Max primary pressure</td>
</tr>
<tr>
<td>Expansion relief valve setting</td>
</tr>
<tr>
<td>T&P valve setting</td>
</tr>
<tr>
<td>T&P Part number</td>
</tr>
<tr>
<td>Immersion heater electrical rating</td>
</tr>
</tbody>
</table>

Table 2: Technical parameters in accordance with European Commission regulations 814/2013 and 812/2013
3.2 Dimensions and connections

Figure 1: General dimensions - Indirect

Table 3: General dimensions table - Indirect

<table>
<thead>
<tr>
<th>Item</th>
<th>125l</th>
<th>145l</th>
<th>170l</th>
<th>210l</th>
<th>250l</th>
<th>300l</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>794</td>
<td>895</td>
<td>1020</td>
<td>1095</td>
<td>1323</td>
<td>1574</td>
</tr>
<tr>
<td>B</td>
<td>1102</td>
<td>1229</td>
<td>1384</td>
<td>1486</td>
<td>1738</td>
<td>2053</td>
</tr>
<tr>
<td>C</td>
<td>709</td>
<td>810</td>
<td>934</td>
<td>1011</td>
<td>1238</td>
<td>1526</td>
</tr>
</tbody>
</table>

Danfoss TPOne-M Programmable Room Thermostat with timed Domestic Hot Water (DHW) control:
Programmer dimensions: 155mm (W) x 66mm (H) x 30mm (D)
Power supply: 220V/240V ac, 50Hz
Switch action: 2 x SPDT, Type 1B. Switch rating 220/240V ac, 50/60Hz, 3(1)A
Power reserve: minimum 24 hours
Memory back up retained for life of product
Enclosure rating: IP20
Control temperature range: selectable 5 to 35°C
Holiday mode with room temperature setback
Timing accuracy: +/- 1 minute/month
Maximum ambient temperature: 45°C

Danfoss TPOne-B Programmable Room Thermostat:
Programmer dimensions: 155mm (W) x 66mm (H) x 30mm (D)
Power supply: 2xAA alkaline batteries
Switch type: SPDT
Memory retention: 1 minute during battery change
Temperature range: off, 5-35°C
Maximum ambient temperature: 45°C

Honeywell 2 Port Motorised Valves:
Model No.: V4043H
Voltage rating: 230V ac, 50Hz
Power consumption: 6W
Primary water temperature range: 5 to 88°C
Maximum ambient temperature: 52°C

Automatic Differential By-pass Valve:
Model No.: RWC DIFF 200 005
Setting range: 0 to 0.05 MPa (0 to 0.5 bar) differential pressure
Maximum primary water temperature: 110°C
Maximum operating pressure 1.0MPa (10 bar)
3.3 Circulating pump set-up

Primary Circulating Pump:
Model No.: Grundfos UPM3 Auto L 25-70 130
Working pressure: 1 MPa (10 bar) max.
Voltage rating: 230V ac, 50Hz
Starting capacitor: 2uF
Enclosure rating: IP42

Setting up the UPM3 pump

When you switch on the pump it will run to the pre-set position or the last setting. The diagram opposite shows the current operation status.

To change the pump setting, follow below:
(a) Press the ‘€’ to switch to switch to the settings view. The LEDs show the current setting for 2 seconds.
(b) Release ‘€’ for more than 2 seconds. The user interface shows the current performance in “operation status”.
(c) Press ‘€’ for more than 2 seconds and the circulator switches to “setting selection”. The LEDs flash and show the current setting mode. Please note that if the key lock is disabled, the circulator will not switch to “setting selection”.
(d) During a period of 10 seconds, press shortly on the ‘€’ and the pump switches to the next setting.
(e) To select between the settings, instantly press the button until you find the setting you want. If you pass the setting, you will need to continue until the setting appears again. It is not possible to go back.
(f) Release ‘€’ for more than 10 seconds and the user interfaces switches back to the performance view and the last setting is stored.
(g) Press ‘€’ and the display switches to the setting view and the LEDs show the current setting for 2 seconds.
(h) Release ‘€’ for more than 2 seconds and the user interface switches back to the performance view.
Control Mode explanation

Proportion pressure

The head pressure is reduced at falling heat demand and increased at rising heat demand. The duty point of the circulator will move up or down on the selected proportional pressure curve depending on the heat demand in the system.

• PP1: lowest proportional pressure curve
• PP2: Intermediate proportional pressure curve
• PP3: Highest proportional pressure curve

Constant pressure

The head pressure is kept constant, irrespective of the heat demand. The duty point of the circulator will move out or in on the selected constant pressure curve, depending on the heat demand in the system.

• PP1: lowest constant pressure curve
• PP2: Intermediate constant pressure curve
• PP3: Highest constant pressure curve

Constant curve

The circulator runs on a constant curve, which means that it runs at a constant speed or power.

The duty point of the circulator moves up or down the selected curve, depending on the heat demand in the system.

<table>
<thead>
<tr>
<th>Constant Curve</th>
<th>[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>4</td>
</tr>
<tr>
<td>CC2</td>
<td>5</td>
</tr>
<tr>
<td>CC3</td>
<td>6</td>
</tr>
<tr>
<td>CC4 (max.)</td>
<td>7</td>
</tr>
</tbody>
</table>
3.4 Electrical diagram(s)

Figure 2: Schematic wiring diagram - basic 2 x 2 port valve system

Notes:
1. All Earth connections must be linked back to the Earth terminals in the Wiring Centre.
2. All Neutral connections must be linked back to the Neutral terminals in the Wiring Centre.
3. Assumes basic boiler.
4. The 22mm motorised valves do not have a white wire.
5. The above diagram is for guidance only, the manufacturer accepts no liability for any loss or damage arising from any errors or omissions that may be inadvertently contained within this diagram. The various equipment manufacturers should be consulted to confirm the correct operation of their products within the system.
Access to Control Unit:
Disconnect from mains supply before removing any covers.

Removing the Control Cover:
- Unscrew the large screw using a flat ended screwdriver.
- Lift from bottom of cover at point indicated until cover comes away freely.

Replacing the Control Cover:
- Tilt and align the top 2 lugs in the holes indicated.
- Firmly press the cover until it "snaps" back in place.
- Tighten the large screw.

WARNING
- Do not over tighten

Control Housing Details

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Immersion connections</td>
<td>Indirect control wiring</td>
</tr>
<tr>
<td>1.5mm² 3 Core HO5 VV-F sheathed cable</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Indirect wiring schematic

Figure 3: Cover Access

Figure 3: Cover Access

LUGS

LIFT FROM THIS POINT

REPLACE

Direct Wiring Layout

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5mm² 3 Core HO5 VV-F sheathed cable</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Direct wiring schematic
5. Before installation

5.1 Installation regulations

Installation of the appliance must be carried out by a qualified Engineer in accordance with prevailing and national regulations as listed below.

- Building Regulations G3
- The Building Standards (Scotland)
- The Building Regulations (Northern Ireland)
- I.E.E Electrical Regs
- UK Water Regulations

5.2 Installation requirements

Water supply

In an unvented system the pressure and flowrate is directly related to the incoming water supply. For this reason it is recommended that the maximum water demand is assessed and the water supply checked to ensure this demand can be satisfactorily met.

We suggest the minimum supply requirements should be 0.15MPa (1.5 bar) pressure and 20 litres per minute flow rate. However, at these values outlet flow rates may be poor if several outlets are used simultaneously.

A 22mm cold water supply is recommended, however, if a smaller supply exists, which provides sufficient flow, this may be used (although more flow noise may be experienced).

The higher the available pressure and flow rate the better the system performance.

See table 1 on page 5 for cylinder operating pressures. This is controlled by the cold water combination valve assembly.

The water supply must be of wholesome water quality (Fluid Category 1 as defined by the Water Supply Regulations 1999).
Outlet/terminal fittings (taps, etc.)
- The cylinder can be used with most types of terminal fittings.
- Outlets situated higher than the cylinder will give outlet pressures lower than that at the heater, a 10m height difference will result in a 1 bar pressure reduction at the outlet.
- All fittings, pipework and connections must have a rated pressure of at least 8 bar (dependant on cylinder being fitted) at 80°C.

Limitations
The cylinder should not be used in association with any of the following:
- Solid fuel boilers or any other boiler in which the energy input is not under effective thermostatic control, unless additional and appropriate safety measures are installed.
- Ascending spray type bidets or any other class 1 back syphonage risk requiring that a type A air gap be employed.
- Steam heating plants unless additional and appropriate safety devices are installed.
- Situations where maintenance is likely to be neglected or safety devices tampered with.
- Water supplies that have either inadequate pressure or where the supply may be intermittent.
- Situations where it is not possible to safely pipe away any discharge from the safety valves.
- In areas where the water consistently contains a high proportion of solids, e.g. suspended matter that could block the strainer, unless adequate filtration can be ensured.
- In areas where the water supply contains chloride levels that exceed 250mg/l.
- Gravity circulation primaries.

5.3 Choice of location
The cylinder must be vertically floor mounted. Although location is not critical, the following points should be considered:
- The cylinder should be sited to ensure minimum dead leg distances, particularly to the point of most frequent use.
- Avoid siting where extreme cold temperatures will be experienced. All exposed pipe work should be insulated.
- The discharge pipework from the safety valves must have minimum fall of 1:200 from the unit and terminate in a safe and visible position.
6. Installation

6.1 General

After reading the previous sections in this booklet and choosing a good location for the unit please install, paying attention to the following hydraulic, electrical and commissioning sections.

Boiler selection

- The boiler should have a control thermostat and non self-resetting thermal cut-out and be compatible with unvented storage water heaters.

- Can be a sealed system or open vented type - maximum primary pressure 3 bar.
- The primary flow from the boiler must be pumped. Gravity circulation will not work due to the special design of the primary heat exchanger. It is recommended that an air bleed point or automatic air vent is incorporated in the primary return pipework close to the unvented system.
- The boiler cannot be vented through the cylinder.

NOTE:
A backflow prevention device may include check valves, a water meter or an additional PRV

Figure 6: Typical installation schematic (not to scale)
6.2 Water connections

WARNING

- Under no circumstances should the factory fitted temperature/pressure relief valve be removed other than by a competent person. To do so will invalidate any guarantee or claim.
- The cold water combination valve assembly must be fitted on the mains water supply to the cylinder.
- No control or safety valves should be tampered with or used for any other purpose.
- The discharge pipe should not be blocked or used for any other purpose.
- The tundish should not be located adjacent to any electrical components.
- Where the inlet supply to the Pressure Reducing Valve is routed through a heated space and is fitted with a check valve or other fitting that would prevent back flow, high pressures can be experienced in the inlet pipe due to warming that can cause damage to the PRV or other fittings on the inlet supply. In these circumstances, the installation of a means to accommodate expansion and thus limit the pressure rise in the inlet pipe is recommended.

Refer to the installation schematic (fig 11, page 16) for details on the pipework layout. Specific details for the discharge pipework layout is also provided in figure 13 on page 20.

- The connection points to the heating system are in 22mm O/D copper pipe for 125, 145, 170, and 210 litre units.
- The connection points to the heating system are in 28mm O/D copper pipe for 250 and 300 litre units.
- All pipe fittings are made via 22mm compression fittings directly to the unit (nuts and olives supplied).
- Solder fittings can be used, but extreme care must be taken to ensure the plastic coating of the unit casing is not damaged by heat.
- Push fit type fittings can be used for connection to the copper pipes.
- The cold water inlet control kit supplied with the unvented unit incorporates a full flow isolating valve which will enable the unvented water heater to be isolated from the mains supply for maintenance or servicing.
- A suitable draining tap should be installed in the cold water supply to the cylinder between the expansion valve and the heater at as low a level as possible.
- It is recommended that the outlet point of the drain pipework be at least 1 metre below the level of the heater (this can be achieved by attaching a hose to the drain tap outlet spigot).

T&P Relief Valve Insulation

A set of insulating components is supplied with the water heater and should be installed to gain maximum heat and energy saving benefits. See Figure 7 below, for installation instructions.

IMPORTANT INFORMATION: HOW TO INSULATE YOUR T&P RELIEF VALVE

TO SAVE HEAT AND ENERGY A SET OF INSULATING PARTS FOR THE T&P RELIEF VALVE HAVE BEEN SUPPLIED WITH THIS WATER HEATER. INSTALL THE HEATER FIRST then FIT THE INSULATING PARTS BY FOLLOWING THE DIAGRAMS BELOW.

![Figure 7: T&P insulation](image-url)
Cold water control pack

CAUTION

- Flush supply pipe work before connection to remove all flux and debris prior to fitting the inlet controls. Failure to do this may result in irreparable damage to the controls and will invalidate any warranty.

- The 3 bar pressure reducing valve can be connected anywhere on the cold water cylinder supply. There is no requirement to site it close to the unit, it can be located at a point where the mains supply enters the premises if this is more convenient but you must install a non-return valve just after the reducing valve for ease of maintenance.

- The control pack incorporates the strainer, check valve, core unit and expansion relief valve.

- The pressure setting is set to 3 bar.

- The valve can be fitted in any orientation to suit the installation as long as the valve is installed with the direction of flow arrows pointing in the correct direction.

- The expansion relief valve should be installed with the discharge pipe work in either the horizontal position or facing downwards.

- No other valves should be placed between the cold water combination valve and the cylinder.

- Where discharge pipe work is difficult to attain, the local building control officer from the local council should be sought for advice as this falls under G3 guidelines and is not down to the manufacturer for unvented systems.

Primary circuit control

- Primary circulation to the cylinder heat exchanger must be pumped; gravity circulation WILL NOT WORK.

- It is recommended that an air bleed or automatic air vent is incorporated in the primary return pipe work close to the unit.

- Boiler flow temperature should be set to 82° (maximum flow temperature to primary heat exchanger 88°C).

PRV WARNING:

IF THERE IS AN UPSTREAM CHECK VALVE OR FITTING WHICH MAY PREVENT BACK FLOW THEN HIGH PRESSURES CAN BE EXPERIENCED DUE TO AMBIENT TEMPERATURES WHICH CAN CAUSE DAMAGE TO THE VALVES AND FITTINGS
Stopcock is grouped with the 3 Bar pressure Reducing valve. Make sure the flow is correct to the markings on the valve.

Figure 9: Stopcock and an 8 bar pressure relief valve

3 Bar Pressure Reducing Valve

Stopcock

From 3 Bar Pressure Reducing Valve

22mm Compression connection

8 Bar Pressure Relief Tee with Check Valve

To Megaflo eco SystemFit inlet Connection

To Tundish

8 Bar Expansion Relief Cartridge

Figure 10: valve set can be grouped two ways
Figure 11: Schematic installation diagram using 8bar pressure relief valve in conjunction with 3bar pressure reducing valve.

Balanced HWS and MCWS to bathrooms, showers, cloakrooms, etc

HWS supply

Balanced cold water draw-off

8 Bar Pressure Relief Valve (combined Expansion Relief Valve/Check Valve)

3 Bar Pressure Reducing Valve incorporating Pressure Reducing Valve, Strainer, and Check Valve. (Stop cock can be fitted here)

NOTE:
If a device that prevents backflow is installed on the cold water supply to the PRV then a means of accommodating expansion due to local warming of the pipe is recommended to be fitted between the Device and PRV.

NOTE:
A backflow prevention device may include check valves, a water meter or an additional PRV

KEY
MCWS = Mains cold water supply
HWS = Hot water service
SC = Stop Cock / Isolating Valve
DOC = Drain Off Cock

Discharge pipe to atmosphere (see page 18 "Discharge Pipework")

1/2" Sensor Pocket Assembly Long

NOTE:
If a device that prevents backflow is installed on the cold water supply to the PRV then a means of accommodating expansion due to local warming of the pipe is recommended to be fitted between the Device and PRV.

Back flow prevention Device (if fitted)

DOC

SC

Mains Cold Water Supply
Secondary circulation
If secondary circulation is required it is recommended that it be connected to the cylinder as shown (see fig. 12, below).

- The secondary return pipe should be in 15mm pipe and incorporate a check valve to prevent backflow.
- A suitable WRAS approved bronze circulation pump will be required.
- On large systems, due to the increase in system water content, it may be necessary to fit an additional expansion vessel to the secondary circuit. This should be done if the capacity of the secondary circuit exceeds 10 litres.

Pipe capacity (copper):
15mm O.D. = 0.13 l/m (10 litres = 77m)
22mm O.D. = 0.38 l/m (10 litres = 26m)
28mm O.D. = 0.55 l/m (10 litres = 18m)

Note: Plastic pipe capacities may be reduced due to thicker wall sections.

In direct electric installations where a secondary circulation is required particular attention should be paid by the Installer to maintain the returning water temperature (guidelines state that a minimum of 55°C return temperature is advisable). Factors such as, but not limited to, secondary circulation flow rates, minimising heat loss of all secondary circuit pipework and timed operation during periods of high demand are critical to the correct operation and longevity of the heating element(s) and thermostats.
Discharge

It is a requirement of Building Regulation G3 that any discharge from an unvented system is conveyed to where it is visible, but will not cause danger to persons in or about the building. The tundish and discharge pipes should be fitted in accordance with the requirements and guidance notes of Building Regulation G3. The G3 Requirements and Guidance section 3.50 - 3.63 are reproduced in the following sections of this manual. For discharge pipe arrangements not covered by G3 Guidance advice should be sought from your local Building Control Officer. Any discharge pipe connected to the pressure relief devices (expansion valve and temperature/pressure relief valve) must be installed in a continuously downward direction and in a frost free environment.

Water may drip from the discharge pipe of the pressure relief device. This pipe must be left open to the atmosphere. The pressure relief device is to be operated regularly to remove lime deposits and to verify that it is not blocked.

G3 REQUIREMENT

“...there shall be precautions...to ensure that the hot water discharged from safety devices is safely conveyed to where it is visible but will not cause danger to persons in or about the building.”

The following extract is taken from the latest G3 Regulations

Discharge pipes from safety devices

Discharge pipe D1

3.50 Each of the temperature relief valves or combined temperature and pressure relief valves specified in 3.13 or 3.17 should discharge either directly or by way of a manifold via a short length of metal pipe (D1) to a tundish.

3.51 The diameter of discharge pipe (D1) should be not less than the nominal outlet size of the temperature relief valve.

3.52 Where a manifold is used it should be sized to accept and discharge the total discharge from the discharge pipes connected to it.

3.53 Where valves other than the temperature and pressure relief valve from a single unvented hot water system discharge by way of the same manifold that is used by the safety devices, the manifold should be factory fitted as part of the hot water storage system unit or package.

Tundish

3.54 The tundish should be vertical, located in the same space as the unvented hot water storage system and be fitted as close as possible to, and lower than, the valve, with no more than 600mm of pipe between the valve outlet and the tundish (see fig 13).

Note: To comply with the Water Supply (Water Fittings) Regulations, the tundish should incorporate a suitable air gap.

3.55 Any discharge should be visible at the tundish. In addition, where discharges from safety devices may not be apparent, e.g. in dwellings occupied by people with impaired vision or mobility, consideration should be given to the installation of a suitable safety device to warn when discharge takes place, e.g. electronically operated.

Discharge pipe D2

3.56 The discharge pipe (D2) from the tundish should:

(a) have a vertical section of pipe at least 300mm long below the tundish before any elbows or bends in the pipework (see fig. 13); and
(b) be installed with a continuous fall thereafter of at least 1 in 200.

3.57 The discharge pipe (D2) should be made of:

(a) metal; or
(b) other material that has been demonstrated to be capable of safely withstanding temperatures of the water discharged and is clearly and permanently marked to identify the product and performance standard (e.g. as specified in the relevant part of BS 7291).

3.58 The discharge pipe (D2) should be at least one pipe size larger than the nominal outlet size of the safety device unless its total equivalent hydraulic resistance exceeds that of a straight pipe 9m long, i.e. for discharge pipes between 9m and 18m the equivalent resistance length should be at least two sizes larger than the nominal outlet size of the safety device; between 18 and 27m at least 3 sizes larger, and so on; bends must be taken into account in calculating the flow resistance. See Fig 13, Table 3 and the worked example.

Note: An alternative approach for sizing discharge pipes would be to follow Annex D, section D.2 of BS 6700:2006 Specification for design, installation, testing and maintenance of services supplying water for domestic use within buildings and their curtilages.

3.59 Where a single common discharge pipe serves more than one system, it should be at least one pipe size larger than the largest individual discharge pipe (D2) to be connected.

3.60 The discharge pipe should not be connected to a soil discharge stack unless it can be demonstrated that the soil discharge stack is capable of safely withstanding temperatures of the water discharged, in which case, it should:

(a) contain a mechanical seal, not incorporating a water trap, which allows water into the branch pipe without allowing foul air from the drain to be ventilated through the tundish;
(b) be a separate branch pipe with no sanitary appliances connected to it;
Worked example of discharge pipe sizing

Fig. 13: shows a G1/2 temperature relief valve with a discharge pipe (D2) having 4 No. elbows and length of 7m from the tundish to the point of discharge.

From Table 3: Maximum resistance allowed for a straight length of 22mm copper discharge pipe (D2) from a G1/2 temperature relief valve is 9.0m.

Subtract the resistance for 4 No. 22mm elbows at 0.8m each = 3.2m

Therefore the permitted length equates to: 5.8m

5.8m is less than the actual length of 7m therefore calculate the next largest size.

Maximum resistance allowed for a straight length of 28mm pipe (D2) from a G1/2 temperature relief valves equates to 18m.

Subtract the resistance of 4 No. 28mm elbows at 1.0m each = 4.0m

Therefore the maximum permitted length equates to: 14m

As the actual length is 7m, a 28mm (D2) copper pipe will be satisfactory.

Note:

1. Plastic pipes should be joined and assembled with fittings appropriate to the circumstances in which they are used as set out in BS EN ISO 1043-1.
2. Where pipes cannot be connected to the stack it may be possible to route a dedicated pipe alongside or in close proximity to the discharge stack.

Termination of discharge pipe

3.61 The discharge pipe (D2) from the tundish should terminate in a safe place where there is no risk to persons in the vicinity of the discharge.

3.62 Examples of acceptable discharge arrangements are:

(a) to a trapped gully with the end of the pipe below a fixed grating and above the water seal;
(b) downward discharges at low level; i.e. up to 100mm above external surfaces such as car parks, hard standings, grassed areas etc. are acceptable providing that a wire cage or similar guard is positioned to prevent contact, whilst maintaining visibility; and
(c) discharges at high level: e.g. into a metal hopper and metal downpipe with the end of the discharge pipe clearly visible or onto a roof capable of withstanding high temperature discharges of water and 3m from any plastic guttering system that would collect such discharges.

3.63 The discharge would consist of high temperature water and steam. Asphalt, roofing felt and non-metallic rainwater goods may be damaged by such discharges.
<table>
<thead>
<tr>
<th>Valve Outlet Size</th>
<th>Minimum Size Of Discharge Pipe D1</th>
<th>Minimum Size Of Discharge Pipe D2 From Tundish</th>
<th>Maximum Resistance Allowed, Expressed As A Length Of Straight Pipe (i.e. No Elbows Or Bends)</th>
<th>Resistance Created By Each Elbow Or Bend</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1/2</td>
<td>15mm</td>
<td>22mm, 28mm, 35mm</td>
<td>up to 9m, up to 18m, up to 27m</td>
<td>0.8m, 1.0m, 1.4m</td>
</tr>
<tr>
<td>G3/4</td>
<td>22mm</td>
<td>28mm, 35mm, 42mm</td>
<td>up to 9m, up to 18m, up to 27m</td>
<td>1.0m, 1.4m, 1.7m</td>
</tr>
<tr>
<td>G1</td>
<td>28mm</td>
<td>35mm, 42mm, 54mm</td>
<td>up to 9m, up to 18m, up to 27m</td>
<td>1.4m, 1.7m, 2.3m</td>
</tr>
</tbody>
</table>

Table 4: Sizing of copper discharge pipe (D2) for common temperature relief valve outlet sizes

Safety device (e.g. Temperature relief valve)

Metal discharge pipe (D1) from Temperature relief valve to tundish

Tundish

Discharge below fixed grating (Building Regulation G3 section 3.61 gives alternative points of discharge)

Fixed grating

Trapped gully

Discharge pipe (D2) from tundish, with continuous fall. See Building Regulation G3 section 3.56, Table 1 and worked example

Figure 13: Typical discharge pipe arrangement (extract from Building Regulation G3 Guidance Section 3.50)
6.3 Electrical connections

In case of difficulty contact service support; contact details are available on page 36 of this booklet.

![WARNING]

- Disconnect from the mains electrical supply before removing any covers.
- Never attempt to replace the immersion heater(s) other than with genuine manufacturers components. Using other manufacturers components may invalidate the warranty on the cylinder.
- DO NOT bypass the thermal cut-out(s) in any circumstances. All electrical wiring should be carried out by a competent electrician and be in accordance with the latest I.E.E Wiring Regulations.
- Each circuit must be protected by a suitable fuse and double pole isolating switch with a contact separation of at least 3mm in both poles.
- DO NOT operate the immersion heaters until the cylinder has been filled with water.

- The immersion heater(s) should be wired in accordance with fig 4 and 5, page 10.

Space and heating systems controls

- The controls provided with the cylinder will ensure the safe operation of the unit within the central heating system.
- Connections to the various system components is made via the wiring centre fitted to the front of the cylinder and the terminal identification labels within the wiring centre to aid in connecting the various external system components such as the mains supply, programmer and boiler.

Programmers and room temperature sensor

- The programmers are supplied loose such that they can be installed at a convenient location within the property.
- These items are supplied with their own installation and user instruction leaflet which should be referred to for details of mounting, wiring and programming.
- Temperature setting of the room temperature is also done at the programmer.

Basic programmer features:

- 24 hour or 5/2 or 7 day operation.
- Room temperature setting at programmer.
- Set temperature over-ride facility.
- 1 hour hot water boost facility.
- Battery back up retains programmed information in the event of a power interruption.
- Low temperature set back option for periods when the property is unoccupied, eg. holiday periods.
- Independent time control of central heating and domestic hot water (Building Regulation Part L1 compliant).

6.4 Filling the installation

- Ensure the drain cock is CLOSED.
- Open a hot tap furthest from the cylinder.
- Open the isolating valve on the 3 bar pressure reducing valve by turning the blue handle on the stop cock (if fitted in this position) so that it lies parallel to the direction of flow. Open the mains stop cock to fill the unit. When water discharges from the tap, allow to run for a few minutes to thoroughly flush through any residue, dirt or swarf, then close the tap.
- Open successive hot taps to purge the system of air.

![WARNING]

Should the Megaflo Eco be used in conjunction with a boiler that controls the water temperature via a sensor connected to the boiler controls it should be noted that the factory fitted indirect thermostat and thermal cut-out MUST NOT be disconnected or bypassed. To do so would invalidate the product approvals and warranty and it would not comply with Building Regulations.

Should this method of control be adopted the Megaflo Eco Indirect thermostat should be set at maximum and the boiler cylinder control temperature set at 60°C to avoid the thermostat over-riding the boiler control.

Where the boiler control does not directly power the 2 Port Motorised Valve supplied with the Megaflo Eco, the wiring should ensure that in the event of the thermal cut-out on the Megaflo Eco Indirect controls operating power will be interrupted to the 2 Port Motorised Valve such that it closes and prevents flow of the primary heating fluid around the Megaflo Eco primary heat exchanger coil.

For further details of wiring the boiler, consult the boiler manufacturer's installation instructions.
7. Commissioning

7.1 General
After filling the installation with water in the previous section please follow the following steps to complete the installation of the unit.

WARNING
DO NOT operate the immersion heaters or primary circuit until the cylinder has been filled with water.

7.2 Checklist before commissioning

- Check all water connections for leaks and rectify as necessary.
- Turn off mains water supply.
- Remove the pressure reducing valve head work to access the strainer mesh; clean and re-fit.
- Turn the water supply back on.
- Manually open, for a few seconds, each relief valve in turn, checking that water is discharged and runs freely through the tundish and out at the discharge point.
- Ensure that the valve(s) reseat satisfactorily.

7.3 Commissioning procedure

Direct Heating

- Switch on electrical supply to the immersion heater(s) and allow the cylinder to heat up to normal working temperature (60 - 65°C recommended).
- If necessary the temperature can be adjusted by inserting a flat bladed screwdriver in the adjustment spindle on front of the immersion heater thermostat and rotating. The adjustment represents a temperature range of 12°C to 68°C.
- Check the operation of thermostat(s) and that no water has issued from the expansion relief valve or temperature/pressure relief valve during the heating cycle.

Figure 14: Boiler and Immersion controls

Indirect units

- Fill the indirect (primary) circuit following the boiler manufacturer’s commissioning instructions.
- Ensure the filling loop hose is connected at both ends and is tight.
- Open the isolating valves at either end of the filling loop and allow to fill from the mains inlet supply.
- To ensure the cylinder primary heat exchanger is filled, both of the 2 port motorised valve (supplied) should be manually opened by moving the lever on the motor housing to the MANUAL setting. When the primary circuit is full return the lever to the AUTOMATIC position.
- Air can be vented from the primary heating coil by unscrewing the small dust cap on the auto air vent by half a turn.
- The primary system should be pressurised to the minimum pressure required by the boiler (usually 1 bar), the pressure gauge fitted should be used to ensure the correct system pressure is set.
- When full and pressurised, the filling loop isolating valves should be closed and the pipe disconnected. The levers on the motorised valves should be returned to the Auto position.
- Switch on the boiler, ensure the programmer is set to Hot Water and allow the cylinder to heat up to a normal working temperature (60 - 65°C recommended).

WARNING
If the unit is to be left unused following installation and commissioning e.g. unoccupied properties, the water heater should be drained or regularly flushed through with fresh mains water once a week.
- When placing the unit into service, the procedure for filling the unit and the system checks above should be observed.

SPINDLE POSITIONS

\[\begin{array}{c}
\text{SPINDLE POSITIONS} \\
\text{I} = \text{MINIMUM TEMP} \\
\text{E} = \text{MAXIMUM TEMP} \\
\text{O} = \text{APPROX 60 °C} \\
\text{ROTATE SPINDLE CLOCKWISE FOR TEMPERATURE INCREASE AND COUNTER CLOCKWISE FOR TEMPERATURE DECREASE}
\end{array} \]
8. Operation

8.1 General

WARNING

- If water discharges from the temperature/pressure relief valve on the cylinder shut down the heat source. Do not turn off any water supply. Contact a competent Installer for unvented water heaters to check the system.
- Do not tamper with any of the safety valves fitted to the system. If a fault is suspected contact a competent Installer.
- DO NOT bypass the thermal cut-out(s) in any circumstances.

Benchmark

The cylinder is covered by the Benchmark Scheme which aims to improve the standards of installation and commissioning of domestic heating and hot water systems in the UK and to encourage regular servicing to optimise safety, efficiency and performance.

Benchmark is managed and promoted by the Heating and Hotwater Industry Council. For more information visit www.centralheating.co.uk.

Please ensure that the Installer has fully completed the Benchmark Checklist (page 32) of this manual and that you have signed it to say that you have received a full and clear explanation of its operation. The Installer is legally required to complete a commissioning checklist as a means of complying with the appropriate Building Regulations (England & Wales).

All installations must be notified to Local Area Building Control either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the Customer who should, on receipt, write the Notification Number on the Benchmark Checklist.

This product should be serviced regularly to optimise its safety, efficiency and performance. The service Engineer should complete the relevant Service Record on the Benchmark Checklist after each service.

The Benchmark Checklist may be required in the event of any warranty work.

Flow performance

When initially opening hot outlets a small surge in flow may be noticed as pressures stabilise. This is quite normal with unvented systems. In some areas cloudiness may be noticed in the hot water. This is due to aeration of the water, is quite normal and will quickly clear.

Operational faults and their possible causes are detailed in the Fault Finding section (p.26) of this book. It is recommended that faults should be checked by a competent Installer.

Temperature controls – direct units immersion heater(s)

- All immersion heaters are fitted with a thermostat which is fitted in the centre of the heater plate and a cut-out which is fitted to the side of the thermostat.
- Access to the thermostat can be made by opening the immersion heater cover - DISCONNECT THE ELECTRICAL SUPPLY BEFORE OPENING THE COVER(S).
- Temperature adjustment is made by rotating the adjustment knob on the top of the thermostat. The adjustment represents a temperature range of 12°C to 68°C.
- Maximum working temperature is 68°C/154°F. In very hard water areas limit to 60/65°C (140/150°F).

DO NOT bypass the thermal cut-out(s) in any circumstances.

Temperature controls - indirect units

The cylinder units are fitted with an indirect thermostat and thermal cut-out. These controls must be wired in series with the 2 port motorised zone valves supplied to interrupt the flow of primary water around the heat exchanger coil when the control temperature has been reached.

DO NOT bypass the thermal cut-out(s) in any circumstances.

The air volume within the product will periodically require recharging to ensure expanded water is accommodated within the system. A discharge of water INTERMITTENTLY from the expansion valve will indicate the air volume has reduced to a point where it can no longer accommodate the expansion.

INFO

http://www.baxi.co.uk/information-and-advice/how-to-videos.htm

To recharge the air volume:-

- Turn off the heat source to the cylinder via programmers / immersion isolation switch(es).
- Turn off the water supply to the cylinder by turning off the isolating valve on the 3 bar pressure reducing valve if fitted at this point or at the 8 bar pressure relief valve if fitted there. Turn the handle so that it lies at 90° to the direction of flow. See figure 17 page 28.
- Open the lowest hot tap.
- Hold open the temperature / pressure relief valve until water ceases to run from the tap and gurgling noise at the valve stops.
- Close the temperature / pressure relief valve.
- Turn on the isolating valve at the cold water combination valve by turning the handle so it lies parallel to the direction of flow, when water flows from the hot tap, close tap.
- The air volume will be automatically recharged as the unit refills. If after following the above actions water still discharges from the expansion relief valve, further advice should be sought from a competent Installer or the Megaflo service department.
9. Maintenance

9.1 General

Maintenance requirements

Unvented hot water systems have a continuing maintenance requirement in order to ensure safe working and optimum performance. It is essential that the relief valve(s) are periodically inspected and manually opened to ensure no blockage has occurred in the valves or discharge pipework. Maintenance of this appliance should only be carried out by a suitably qualified person. Failure to do so could invalidate the warranty.

Similarly cleaning of the strainer element and replacement of the air in the product will help to prevent possible operational faults.

The maintenance checks described below should be performed by a competent person on a regular basis, e.g. annually to coincide with boiler maintenance.

After any maintenance, please complete the relevant Service Interval Record section of the Benchmark Checklist on page 30 of this document.

9.2 Standard inspection & maintenance operation

Inspection

The immersion heater boss can be used as an access for inspecting the cylinder internally.

Safety valve operation

CAUTION

Water discharged may be very hot!

- Manually operate the temperature/pressure relief valve for a few seconds.
- Check water is discharged and that it flows freely through the tundish and discharge pipework.
- Check valve reseats correctly when released.
- Repeat the above procedure for the expansion relief valve.

Strainer

- Turn off the isolating valve prior to the Pressure Reducing Valve or the main stop cock to the system.
- Open the lowest hot tap in the system to relieve the system pressure.
- Using a spanner unscrew the pressure reducing cartridge and remove the moulded housing. The strainer will be removed with the cartridge.
- Wash any particulate matter from the strainer under clean running water.
- Replace the strainer and screw the Pressure Reducing Valve cartridge into the moulded housing.

Descaling immersion heater(s)

- Turn off the mains water supply, isolate the electrical supply and turn off boiler.
- Attach a hosepipe to the drain cock having sufficient length to take water to a suitable discharge point below the level of the unit.
- Open a hot tap close to the unit and open drain cock to drain unit. If water fails to drain vent the unit manually by opening the temperature and pressure relief valve.
- Open the cover(s) to the immersion heater housing(s) and disconnect wiring from immersion heater(s) thermostat(s).
- Unscrew the immersion heater backnut(s) and withdraw the immersion heater from the cylinder. A key spanner is supplied with the product for easy removal and tightening of the immersion heater(s). Over time the immersion heater gasket may become stuck to the mating surface. To break the seal insert a round shafted screwdriver into one of the pockets on the immersion heater and gently lever up and down. Take care when lifting the immersion heater out of the cylinder and work within safe working practices.
- Carefully remove any scale from the surface of the element(s).

Re-commissioning

- Check all electrical and plumbing connections are secure. Close the drain cock.
- With a hot tap open, turn on the cold water supply and allow unit to refill.
- DO NOT switch on the immersion heater(s) or boiler until the unit is full.
- When water flows from the hot tap allow to flow for a short while to purge air and flush through any disturbed particles.
- Close hot tap and then open successive hot taps in system to purge any air.
- When completely full and purged check system for leaks.
- The heating source (immersion heater(s) or boiler) can then be switched on.
10. Troubleshooting

WARNING
Do not tamper with any of the safety valves or controls supplied with the cylinder as this will invalidate any guarantee.

10.1 Fault finding

Important
- After servicing, complete the relevant Service Interval Record section of the Benchmark Checklist located on pages 32 and 33 of this document.
- Servicing should only be carried out by competent persons in the installation and maintenance of unvented water heating systems.
- Any spare parts used MUST be authorised parts.
- Disconnect the electrical supply before removing any electrical equipment covers.
- NEVER bypass any thermal controls or operate system without the necessary safety valves.

Water contained in the cylinder may be very hot, especially following a thermal control failure. Caution must be taken when drawing water from the unit.

The fault finding chart (table 5, below) will enable operational faults to be identified and their possible causes rectified. Any work carried out on the unvented water heater and its associated controls MUST be carried out by a competent Installer for unvented water heating systems. In case of doubt contact service support.

Spare Parts
A full range of spare parts are available for the cylinder range (table 6, page 27). Refer to the technical data label on the unit to identify the model installed and ensure the correct part is ordered. You will need to quote the serial number, which is printed on the data label.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No hot water flow</td>
<td>Mains water supply off</td>
<td>Check and open stop cock</td>
</tr>
<tr>
<td></td>
<td>Strainer blocked</td>
<td>Turn off water supply. Remove strainer and clean</td>
</tr>
<tr>
<td></td>
<td>Cold water combination valve incorrectly fitted</td>
<td>Check and refit as required</td>
</tr>
<tr>
<td>Water from hot tap is cold</td>
<td>Direct immersion heater not switched on</td>
<td>Check and switch on</td>
</tr>
<tr>
<td></td>
<td>Direct immersion heater thermal cut-out has operated</td>
<td>Check, reset by pushing button on thermostat</td>
</tr>
<tr>
<td></td>
<td>Indirect programmer set to central heating only</td>
<td>Check, set to domestic hot water programme</td>
</tr>
<tr>
<td></td>
<td>Indirect boiler not working</td>
<td>Check boiler operation. If fault is suspected consult boiler manufacturer’s instructions</td>
</tr>
<tr>
<td></td>
<td>Indirect thermal cut-out has operated</td>
<td>Check, reset by pushing button on thermostat. Check operation of indirect thermostat</td>
</tr>
<tr>
<td></td>
<td>Indirect motorised valve not connected correctly</td>
<td>Check wiring and/or plumbing connections to motorised valve</td>
</tr>
<tr>
<td>Water discharges from expansion valve</td>
<td>Intermittently Air volume in product has reduced</td>
<td>See Page 24 for re-charging of the air volume</td>
</tr>
<tr>
<td></td>
<td>Continually</td>
<td>Check pressure from cold water combination valve. If greater than 3bar replace pressure reducing valve cartridge. Remove expansion valve cartridge, check condition of seat. If necessary fit new expansion valve</td>
</tr>
<tr>
<td></td>
<td>Cold water combination valve pressure reducer not working correctly. Expansion valve seat damaged</td>
<td></td>
</tr>
<tr>
<td>Water discharges from T&P relief valve</td>
<td>Thermal control failure CAUTION: Water will be very hot!</td>
<td>Switch off power to immersion heater(s) and shut down boiler. DO NOT turn off water supply. When discharge stops check all thermal controls, replace if faulty</td>
</tr>
<tr>
<td>Milky water</td>
<td>Oxygenated water</td>
<td>Water from a pressurised system releases oxygen bubbles when flowing. The milkiness will disappear after a short while</td>
</tr>
</tbody>
</table>

Table 5: Fault finding chart
11. Decommissioning

11.1 Decommissioning procedure

- Isolate electrical supplies and make safe
- Isolate the water supply
- Drain the cylinder
- Drain the primary circuit (indirect only)
- Remove cylinder
- Cap pipework

12. Spare parts

12.1 Spare parts list

A full range of spare parts are available for the cylinder range. Refer to the Technical Data label on the unit to identify the model installed and ensure the correct part is ordered.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>SPARES NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold water inlet control kit - complete</td>
<td>95605894</td>
</tr>
<tr>
<td>3 bar pressure reducing valve - complete</td>
<td>95605886</td>
</tr>
<tr>
<td>8 bar pressure relief valve - complete</td>
<td>95605893</td>
</tr>
<tr>
<td>Stopcock</td>
<td>95605885</td>
</tr>
<tr>
<td>Immersion heater backnut</td>
<td>95607940</td>
</tr>
<tr>
<td>Immersion heater gasket</td>
<td>7035165</td>
</tr>
<tr>
<td>Immersion heater key</td>
<td>95607861</td>
</tr>
<tr>
<td>Immersion heater blanking plug</td>
<td>95605881</td>
</tr>
<tr>
<td>Titanium immersion heater - upper</td>
<td>95606989</td>
</tr>
<tr>
<td>Direct combined thermostat / thermal cut-out</td>
<td>95612717</td>
</tr>
<tr>
<td>Direct combined thermostat / thermal cut-out (spade terminals)</td>
<td>95612720</td>
</tr>
<tr>
<td>Tundish</td>
<td>95605838</td>
</tr>
<tr>
<td>Insulation set (T&P relief valve)</td>
<td>95607922</td>
</tr>
<tr>
<td>Mounting plate (indirect)</td>
<td>95607931</td>
</tr>
<tr>
<td>Indirect control cover</td>
<td>95614118</td>
</tr>
<tr>
<td>6 way terminal block</td>
<td>95607933</td>
</tr>
<tr>
<td>2 port motorised valve (22mm connections)</td>
<td>95605819</td>
</tr>
<tr>
<td>Incoloy immersion heater - lower</td>
<td>95606984</td>
</tr>
<tr>
<td>Indirect combined thermostat and cut-out</td>
<td>95612716</td>
</tr>
<tr>
<td>Indirect combined thermostat and cut-out (spade terminals)</td>
<td>95612719</td>
</tr>
<tr>
<td>Temperature and pressure relief valve</td>
<td>95605810</td>
</tr>
<tr>
<td>Set of compression nuts and olives</td>
<td>95607838</td>
</tr>
<tr>
<td>Drain valve 1/4 turn</td>
<td>95605051</td>
</tr>
<tr>
<td>Wiring centre</td>
<td>95612702</td>
</tr>
<tr>
<td>TPOne-M Programmer</td>
<td>7732849</td>
</tr>
<tr>
<td>Automatic differential bypass valve (straight)</td>
<td>95607692</td>
</tr>
<tr>
<td>2 port motorised valve (28mm connections)</td>
<td>95605884</td>
</tr>
<tr>
<td>Pressure gauge</td>
<td>95607065</td>
</tr>
<tr>
<td>Automatic air vent</td>
<td>95605050</td>
</tr>
<tr>
<td>12 Litre primary expansion vessel</td>
<td>95607066</td>
</tr>
<tr>
<td>Expansion vessel hose</td>
<td>95607067</td>
</tr>
<tr>
<td>Circulating pump</td>
<td>7032842</td>
</tr>
<tr>
<td>Expansion relief valve (3 bar primary circuit)</td>
<td>95607095</td>
</tr>
<tr>
<td>Filling loop and connection</td>
<td>95607096</td>
</tr>
<tr>
<td>TPOne-B programmable room stat</td>
<td>7732851</td>
</tr>
<tr>
<td>22mm Manifold</td>
<td>7034121</td>
</tr>
<tr>
<td>28mm Manifold</td>
<td>7034122</td>
</tr>
<tr>
<td>1/2" BSP Sensor Pocket Assembly Long</td>
<td>7032579</td>
</tr>
</tbody>
</table>

Table 6: Spares

Environmental information

Products are manufactured from many recyclable materials. At the end of their useful life they should be disposed of at a Local Authority Recycling Centre in order to realize the full environmental benefits.

Insulation is by means of an approved CFC/HFC free polyurethane foam with an ozone depletion factor of zero.
3 Bar Pressure Reducing Valve - Complete
95:605:886

Figure 15: Exploded view of 3bar pressure reducing valve

Expansion Relief Cartridge

8 Bar Pressure Relief Valve, Complete
95:605:893

Figure 16: Exploded view of 8bar pressure relief valve

Stopcock, Can Be Used Either with 3 Bar Inlet Control Valve or 8 Bar Pressure Relief Valve
95:605:885

Figure 17: Exploded view of stopcock
Indirect Control Assembly

For 210 litre and above a further indirect control assembly accessory is available 95:970:554

Mounting plate (indirect) 95:607:931

Terminal cover (indirect) 95:614:118

Backnut 95:607:940

Gasket 7035165

Incoloy immersion heater lower 95:606:984

6 Way terminal block 95:607:933

Direct combined thermostat and thermal cut-out 95:612:717
Figure 19: Indirect exploded view

- T&P valve 95:605:810
- 8 bar pressure relief valve 95:605:893
- Circulating pump 70:328:42
- 2 port motorised valve (22mm connections) 96:605:819
- Filling loop and connections 95:607:096
- Pressure gauge 95:607:065
- Manifold 22mm & 28mm 7034121 & 7034122
- Automatic differential bypass valve 95:607:692
- Drain valve (1/4 turn) 95:605:051
- Wiring centre 95:612:702
- Tundish 95:605:838
- 1/2” BSP Sensor Assembly Pocket long 7032579
WEEE Declaration

This symbol on the product indicates that this product must not be disposed of with your other household waste. Instead, it is your responsibility to dispose of your waste equipment by handing it over to a designated collection point for the recycling of waste electrical equipment. The separate collection and recycling of your waste equipment at the time of disposal will help to conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more information about where you can drop off your waste equipment for recycling, please contact your local city office, your household waste disposal service or the company where this product was purchased.
MAINS PRESSURE HOT WATER STORAGE SYSTEM COMMISSIONING CHECKLIST

This Commissioning Checklist is to be completed in full by the competent person who commissioned the storage system as a means of demonstrating compliance with the appropriate Building Regulations and then handed to the customer to keep for future reference.

Failure to install and commission this equipment to the manufacturer's instructions may invalidate the warranty but does not affect statutory rights.

Customer Name
Address
Cylinder Make and Model
Cylinder Serial Number
Commissioned by (print name)
Company Name
Company Address
Registered Operative ID Number
Telephone Number
Telephone Number
Commissioning Date

To be completed by the customer on receipt of a Building Regulations Compliance Certificate:
Building Regulations Notification Number (if applicable)

ALL SYSTEMS PRIMARY SETTINGS (indirect heating only)
Is the primary circuit a sealed or open vented system?
Sealed Open
What is the maximum primary flow temperature?
°C

ALL SYSTEMS
What is the incoming static cold water pressure at the inlet to the system?
bar
Has a strainer been cleaned of installation debris (if fitted)?
Yes No
Is the installation in a hard water area (above 200ppm)?
Yes No
If yes, has a water scale reducer been fitted?
Yes No
What type of scale reducer has been fitted?

What is the hot water thermostat set temperature?
°C
What is the maximum hot water flow rate at set thermostat temperature (measured at high flow outlet)?
l/min
Time and temperature controls have been fitted in compliance with Part L of the Building Regulations?
Yes
Type of control system (if applicable)
Y Plan S Plan Other
Is the cylinder solar (or other renewable) compatible?
Yes No
What is the hot water temperature at the nearest outlet?
°C
All appropriate pipes have been insulated up to 1 metre or the point where they become concealed
Yes

UNVENTED SYSTEMS ONLY
Where is the pressure reducing valve situated (if fitted)?

What is the pressure reducing valve setting?
bar
Has a combined temperature and pressure relief valve and expansion valve been fitted and discharge tested?
Yes No
The bundish and discharge pipework have been connected and terminated to Part G of the Building Regulations
Yes
Are all energy sources fitted with a cut out device?
Yes No
Has the expansion vessel or internal air space been checked?
Yes No

THERMAL STORES ONLY
What store temperature is achievable?
°C
What is the maximum hot water temperature?
°C

ALL INSTALLATIONS
The hot water system complies with the appropriate Building Regulations
Yes
The system has been installed and commissioned in accordance with the manufacturer's instructions
Yes
The system controls have been demonstrated to and understood by the customer
Yes
The manufacturer's literature, including Benchmark Checklist and Service Record, has been explained and left with the customer
Yes

Commissioning Engineer's Signature

Customer's Signature
(To confirm satisfactory demonstration and receipt of manufacturer's literature)

*All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.
SERVICE RECORD

It is recommended that your hot water system is serviced regularly and that the appropriate Service Record is completed.

Service Provider

Before completing the appropriate Service Record below, please ensure you have carried out the service as described in the manufacturer’s instructions.

<table>
<thead>
<tr>
<th>SERVICE 1</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 2</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 3</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 4</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 5</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 6</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 7</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 8</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 9</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 10</th>
<th>Date</th>
<th>Engineer Name</th>
<th>Company Name</th>
<th>Telephone Number</th>
<th>Comments</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Warranty

Lifetime Warranty*

The Megaflo Lifetime Warranty provides unrivalled levels of Customer support and peace of mind in the unlikely event that a problem arises from a manufacturing defect. It is supported by a large nationwide team of company-employed field-based Engineers and our own call centre, which is open 363 days a year.

This Lifetime Warranty applies in relation to the following Megaflo products:

- Megaflo cylinders
- Megaflo calorifiers

The Megaflo Domestic Lifetime* Warranty

The Megaflo Domestic Lifetime* Warranty covers Megaflo cylinders installed in domestic properties† against corrosion for the lifetime* of the owner.

The cold water combination valve (and expansion vessel, where supplied) is covered by a five year warranty from the date of purchase of the Megaflo product that includes both parts and labour. All other components, including any other valves, fittings and controls are covered by a two year warranty from the date of purchase of the Megaflo product that includes both parts and labour.

In the case of the Megaflo Systemready, Megaflo Systemfit and Megaflo SolaReady units the supplied pumps and motorized valves (where fitted) are also covered by this two year warranty.

Incoloy immersion heaters (where fitted) are covered by a two year warranty. Titanium Immersion heaters (where fitted) are covered by a five year warranty.

The Megaflo Commercial Lifetime* Warranty

The Megaflo Commercial Lifetime Warranty covers Megaflo cylinders and calorifiers installed in non-domestic properties^ against corrosion for a period of 30 years from the date of purchase.

All other components, including valves, expansion vessels, immersion heaters, fittings and controls are covered by a two year warranty from the date of purchase of the Megaflo product that includes both parts and labour.

Accessories

Shower heat recovery units are covered against manufacturing defects for a period of two years. Flat plate solar collectors are covered against manufacturing defects for a period of 10 years from the date of purchase of the Megaflo product. Evacuated tube solar collectors are covered against manufacturing defects for a period of five years from the date of purchase of the Megaflo product. All other solar accessories are covered against manufacturing defects for a period of two years from the date of purchase of the Megaflo product.

Outside of the UK

These warranties are valid for installations within the United Kingdom.

For installation in the Republic of Ireland please contact Potterton Myson (Ireland) Limited on 00353 (0) 1 4590870

For installations outside of the United Kingdom and the Republic of Ireland, please telephone Megaflo Export on +44 1603 420271 for further details of the warranty terms and conditions applicable.

These warranties are valid provided that:

- The Megaflo product has been installed by a competent Installer in accordance with the instructions contained in the installation instructions and in compliance with all relevant laws, guidance, codes of practice and regulations in force at the time of installation.

- The Megaflo product has not been modified or tampered with in any way, other than by a Heatrae Sadia or Baxi Customer Support approved Engineer.

- The Megaflo product has not been subject to damage by scale.

- The Megaflo product and any part or parts of the Megaflo product (whether factory fitted or otherwise) have not been repaired or replaced other than by a Baxi Customer Support approved Engineer and any replacement parts used on
the Megaflo product are authorised Megaflo spare parts.

• The factory fitted temperature and pressure relief valve have not been tampered with or removed.

• The Megaflo product has not been subject to misuse or neglect.

• The Megaflo product has only been used for the storage of wholesome water. Should another substance be put through the product, the warranty will be invalid unless it is part of a disinfectant procedure carried out in accordance with BS EN 806.

• The Megaflo product has not been subjected to frost or freezing temperatures (except for solar collectors which are designed for external installation).

• The Benchmark™ commissioning checklist service record, included in the Megaflo installation instructions has been completed.

• Regular maintenance has been carried out by a competent person, an approved Engineer from Heatrae Sadia or any other part of the Baxi Group Baxi Customer Support approved Engineer in accordance with the requirements set out in the maintenance section of the installation instructions.

• Access is available, at reasonable times and upon reasonable notice, to the Megaflo product to allow for any inspection repair or replacement.

• The product is registered within 60 days of purchase. This can be done by telephone, online or by using the registration form provided with the product.

• Evidence of purchase (for example a receipt or delivery note) and date of supply is submitted when making a claim.

• The Megaflo product has not been affected by any cause beyond our reasonable control including, without limitation: an act of God, explosion, flood, fire or accident; war or civil disturbance; strike, industrial action or stoppages of work; any form of government intervention; a third party act or omission including theft or malicious damage; failure by you to give us a correct delivery address or notify us of any change of address.

If any of the following situations occur, the Megaflo Lifetime Warranty* will not apply:

• Any wilful or accidental damage caused by your negligence

• Damage caused as a result of scale.

• Installation not in line with the Installer and user manuals provided.

• Failure to comply with installation instructions (whether oral or in writing),

• Misuse of the Megaflo product or alteration of the Megaflo product not in accordance with the requirements set out above.

• Defects which are not reported to us outside of the warranty period on 0344 8711535 or Customer.support@baxi.co.uk

• Any third party repair or replacement costs unless those costs have been agreed and authorised by Baxi Customer Support or Heatrae Sadia in writing prior to incurring the costs.

• In relation to the Megaflo Commercial Lifetime Warranty only, we will not be liable for any indirect and consequential losses and any loss of earnings, loss of business, or losses in relation to stress and inconvenience, howsoever caused.
Claims

Defects should be reported to us as soon as you are aware of them. Please report defect to us by contacting 0344 8711535 or Customer.support@baxi.co.uk.

Notes

We are only able to carry out warranty repair/replacement to Megaflo solar collectors which have safe access and that meet current Health & Safety working at heights requirements. The Customer will cover the cost of any safety equipment including but limited to scaffolding and lifting equipment that is required to meet this standard and will appoint a contractor to carry this work out.

Heatrae Sadia accepts no liability for any third party damage.

These warranties do not affect your statutory rights and remedies in relation to the Megaflo products.

Annual service

Annual services are available from Baxi Customer Support, the service division of Heatrae Sadia.

Please contact Baxi Customer Support on 0344 871 1535 for details.

*In domestic properties, lifetime is the period during which the first owner of the Megaflo or new build home continues to own the property. Should the property be sold, the new owner and any subsequent owners will receive a 30 year warranty from the date the original owner purchased the Megaflo or new home with a Megaflo installed. In non-domestic properties lifetime is a period of 30 years from the date of purchase by the original owner and is transferable to any new owner of the property.

†Domestic is any premises not being, or ever having been, wholly or partly utilised for business purposes.

^Non-domestic premises are any premises other than those defined as Domestic.†

All Megaflo warranties are conditional on the installation being carried out in accordance with the installation instructions supplied with the product. These warranties do not affect your statutory rights. Full terms and conditions of these warranty packages are available on request or via www.heatraesadia.com/Megaflo

Heatrae Sadia*, Hurricane Way, Norwich, Norfolk, NR6 6EA

Megaflo may introduce modifications to their products from time to time. Consequentially the details given in this brochure are subject to alteration without notice.

Contacts

Specification Advice Hotline
T: 01603 420220
F: 01603 420229
E: specifier@heatraesadia.com
www.heatraesadia.com

* Heatrae Sadia is a trading name of Baxi Heating UK Limited, Brooks House, Coventry Road, Warwick, CV34 4LL

July 2015
Spares Stockists

Electric Water Heating Co.
2 Horsecroft Place
Pinnacles
Harlow
Essex CM19 5BT
Tel: 0845 0553811
E-Mail: sales@ewh.co.uk

SPD
Special Product Division
Units 9 & 10
Hexagon Business Centre
Springfield Road
Hayes
Middlesex UB4 0TY
Tel: 020 8606 3567

Parts Center
Tel: 0344 292 7057
www.partscenter.co.uk

Newey & Eyre
Unit 3-5 Wassage Way
Hampton Lovett Ind. Estate
Droitwich, Worcestershire
WR9 0NX
Tel: 01905 791500
Fax: 01905 791501

UK Spares Ltd
Unit 1155
Aztec West
Almondsbury
Bristol BS32 4TF
Tel: 01454 620500

Alternatively contact your local supplying merchant or wholesale branch or use our online stockist finder at www.interpartspares.co.uk
NOTES.
UK Customer service

Telephone: 0344 8711535
Facsimile: 0344 8711528
E-mail: megafloservice@baxi.co.uk

Megaflow
Hurricane Way
Norwich
Norfolk
NR6 6EA

Important notice to installations outside of the UK.

References to legislation, legal requirements, regulations, building regulations benchmark, spares stockists and warranty are ONLY APPLICABLE WITHIN THE UK.

For local legislation, legal requirements, regulations, building regulations outside of the UK, contact your local Authority.

For details of either:-
Spares stockists,
Service arrangements,
Warranty Information,
Outside the UK, please contact your local supplier or,

Export Sales
T: +44 (0)1603 420135
F: +44 (0)1603 420199
E: export.sales@heatraesadia.com

The HWA Charter’s Code of Practice requires that all members adhere to the following:
• To supply fit for purpose products clearly and honestly described
• To supply products that meet, or exceed appropriate standards and building and water regulations
• To provide pre and post sales technical support
• To provide clear and concise warranty details to customers

Made in the UK